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Abstract

The US Environmental Protection Agency (EPA) and other federal agencies face a number of 

challenges in interpreting and reconciling short-duration (seconds to minutes) readings from 

mobile and handheld air sensors with the longer duration averages (hours to days) associated with 

the National Ambient Air Quality Standards (NAAQS) for the criteria pollutants-particulate matter 

(PM), ozone, carbon monoxide, lead, nitrogen oxides, and sulfur oxides. Similar issues are equally 

relevant to the hazardous air pollutants (HAPs) where chemical-specific health effect reference 

values are the best indicators of exposure limits; values which are often based on a lifetime of 

continuous exposure. A multi-agency, staff-level Air Sensors Health Group (ASHG) was convened 

in 2013. ASHG represents a multi-institutional collaboration of Federal agencies devoted to 

discovery and discussion of sensor technologies, interpretation of sensor data, defining the state of 
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sensor-related science across each institution, and provides consultation on how sensors might 

effectively be used to meet a wide range of research and decision support needs. ASHG focuses on 

several fronts: improving the understanding of what hand-held sensor technologies may be able to 

deliver; communicating what hand-held sensor readings can provide to a number of audiences; the 

challenges of how to integrate data generated by multiple entities using new and unproven 

technologies; and defining best practices in communicating health-related messages to various 

audiences. This review summarizes the challenges, successes, and promising tools of those initial 

ASHG efforts and Federal agency progress on crafting similar products for use with other NAAQS 

pollutants and the HAPs. NOTE: The opinions expressed are those of the authors and do not 

necessary represent the opinions of their Federal Agencies or the US Government. Mention of 

product names does not constitute endorsement.
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1. Introduction

The Air Sensors 2013: Data Quality and Applications workshop, held in Research Triangle 

Park, N.C., highlighted the substantial advances in the development of portable air sensors 

capable of providing real-time measurements of ambient air pollution [1]. One anticipated 

benefit for the use of air sensors is the potential to expand upon the already well-established 

network of air quality monitors for key air pollutants. Sensor manufacturers introduced a 

number of new, relatively low-cost, portable air sensors capable of continuously measuring 

ambient levels of ozone (O3) and nitrogen dioxide (NO2). In addition, considerable progress 

was described regarding the development of air sensors capable of measuring ambient 

concentrations of particulate matter (PM), and total volatile organic compounds (VOCs). 

Since that 2013 workshop, the field of portable air quality sensing technology has continued 

to evolve at a rapid pace, with commercially available products now available for O3, NO2, 

PM, VOCs, as well as for other pollutants, both alone and in complex mixtures. While the 

potential for these technologies continues to be great, significant challenges in their 

application remain. Most notably, there is a wide range of data quality differences between 

different sensor manufactures and models [2], and there is a significant question about how 

air quality data collected on timescales as short as 1-min should be interpreted in 

comparison to the available health reference values for air pollutants which are typically 

based on exposure durations of several hours to many years [3]. For example, commercially 

available portable air sensors for O3 can provide the user with minute-by-minute O3 

concentrations; however, interpreting these very short-term measurements with respect to 

potential adverse health effects is difficult. The health-based National Ambient Air Quality 

Standard (NAAQS) for O3 is based on an 8-h average concentration which is backed by 

thousands of studies from numerous independent researchers and is established through a 

rigorous process to be scientifically defensible and legally enforceable; no such standards 

have been developed for these shorter duration exposures. Similar challenges exist when 

applying Occupational Safety and Health Administration (OSHA) standards. The most 

comparable OSHA exposure standards include the Permissible Exposure Limit (PEL), 
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which is an 8-h time-weighted average, and the Short Term Exposure Limit (STEL), which 

is a 15-min time-weighted average.

Detection and monitoring of most non-NAAQS environmental chemicals (including the 

hazardous air pollutants), toxins and pathogens still largely involves identifying each 

individual agent, which often requires sending samples to a remote analytical laboratory for 

analyses. Delivery of laboratory results may take days, weeks or even months. Although the 

deployment of portable direct-reading instruments, such as photon ionization detectors 

(PIDs) for total VOCs, can provide some real-time information, these screening instruments 

lack the sensitivity or selectivity delivered by analytical laboratories and thus, are unable to 

fully inform a user with a critical need for high-specificity (e.g., rapid response decision-

makers). New technologies such as miniaturized light emitting diodes, ultra-violet light 

detectors and functionalized graphene resistors have enabled the development of chemical 

detectors capable of delivering laboratory-quality analyses in near real-time. Coupling these 

types of sensors with global positioning and cell phone technologies may enable the 

detection, quantification, and visual monitoring of environmental contamination in real-time 

from remote locations. These promising technologies are expensive, however, and will likely 

remain out of reach for all but the most dedicated citizen scientist. As described in the 

following sections, understanding and advancing these types of applications has been a focus 

of the ASHG: beginning with defining the relevance of air sensors; facing the challenges of 

communicating across diverse key audiences; dealing with data validity issues; and moving 

toward a future with more reliable and useful sensor readings.

Formation of the Air Sensors Health Group (ASHG)

Recognizing the potential widespread use of portable air sensors, the likely data 

interpretation challenges these sensors would present to state and local governments, and the 

opportunity for collaboration across Federal agencies, the ASHG was formed in 2013. The 

ASHG is a multi-institutional collaboration of Federal agencies devoted to keeping abreast 

of new sensor technologies and to assist in the proper interpretation of sensor data as 

potential indicators of air quality. ASHG consists of experts in a number of areas, including 

toxicology, public health, engineering, monitoring and sampling, ambient air, indoor air, and 

occupational health, to name a few.

The ASHG monitors the state of the science at each institution and aims to find common 

ground on how sensors might effectively be used to meet a wide range of research needs in 

the occupational, indoor air, and ambient air settings. The ASHG also aims to be a resource 

for state, regional, and tribal organizations, as well as for citizen scientists and community 

members considering the use of portable air sensors for air pollution research and decision-

making. To date, the ASHG has focused on multiple fronts: assisting EPA Program Offices 

in developing tools and message statements regarding the potential for adverse health effects 

from the short-duration air sensor readings for PM and O3; providing analysis comparing 

short-term readings to longer-duration averages from existing official monitoring stations 

used in determining compliance to the NAAQS; and developing prototype visual tools to 

assist in communicating appropriate interpretive messages. These ASHG contributions have 

been incorporated into projects and programmatic products which are discussed in later 
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sections of this paper. This review summarizes the challenges, and successes of those initial 

ASHG efforts, and Federal agency progress on crafting similar products for use with other 

pollutants.

2. Challenges

2.1. Relevance of Sensor Measurements

A critical concern for interpreting readings from air quality sensors is to have a realistic 

understanding of what the sensors are actually measuring; how that relates to the 

expectations of users (including citizen scientists, researchers, regulatory agencies, etc.) for 

sensitivity, specificity, and robustness of the intended application; and the extent to which 

those measurements of exposure can appropriately be used to communicate potential hazard 

and manage risks to public health. The magnitude of this concern varies greatly across the 

types of pollutants purportedly being measured and is related to a number of factors, such as 

the chemical and physical nature of the pollutant, the reactivity of the pollutant, 

concentration and compositional changes over time and location, and the influences with 

various atmospheric conditions. EPA guidance on achieving high-quality data through 

systematic planning using the data quality objectives process can be found online [4]. 

Standards for data quality can differ slightly depending on the context; additional standards 

are discussed as those contexts are examined in the ensuing sections of this review. The 

ASHG recognized early in their discussions that this ideal for collecting high-quality data 

may not be readily obtainable for all potential users of air pollutant sensors.

Low-cost air sensors on the market to date are predominantly of three types; optical, 

electrochemical, or metal oxide. Generally, these sensor types are not as specific and do not 

incorporate the front end conditioning or selection that is present in Federal Reference 

Method (FRM) or Federal Equivalent Method (FEM) measurement devices. Therefore, low-

cost sensor measurements may suffer from the influence of co-responsive pollutants, 

environmental conditions, and even sensor component production variations. The need to 

understand what the sensor is measuring is of prime importance. In order to better 

understand the measurement and potential confounding influences, an informed user must 

understand the physical and chemical nature of a pollutant of interest and how it responds to 

the environment as well as the sensor measurement technology itself. Field testing may help 

a user understand the influence of confounding factors and could identify co-responsive 

pollutants. The interpretation and use of low-cost air sensor data will be enhanced by 

simultaneous collection of co-responsive pollutant concentrations and environmental data 

including temperature, relative humidity, wind, and weather (i.e., precipitation, fog), as well 

as observations about local pollution sources. In this context, chemical sensors must be 

validated for chemical specificity and sensitivity under the environmental conditions 

expected in the field prior to any consideration for demonstrating regulatory compliance.

2.1.1. Interpreting Sensor Readings—Managing expectations about what sensor 

measurement data can and cannot be used for is paramount in communicating with both 

citizen scientists and the general public at large, who for a variety of reasons (e.g., personal 

health, general air quality interest) may, in the future, routinely consult a sensor. In 
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anticipation of this interest on the part of the public, the U.S. EPA began a pilot effort in 

June 2016, to begin addressing the interpretation of short-term sensor readings in the context 

of air quality [5]. There are several challenges to interpreting these data. Among these 

challenges are sensor performance and the short-term, sometimes instantaneous output from 

a sensor. Short-term sensor data come from instruments of unknown performance quality 

and, importantly, these short-term concentrations cannot be compared to the NAAQS to 

draw conclusions about what these nearly instantaneous exposures may mean in terms of 

health impacts. The NAAQS are based on longer exposure durations (e.g., 8-h or 24-h 

averages) consistent with the health evidence from the reviews of these standards. This 

health evidence does not support linking 1-min (or shorter) ozone or PM2.5 concentrations to 

adverse health effects, thus a 1-min sensor reading is not directly comparable to the NAAQS, 

or to the related Air Quality Index (AQI) categories.

To help the public understand the implications of these readings, scientists at EPA have 

piloted a color-coded Sensor Scale that might be used in conjunction with the AQI to help 

the public better understand what their short-term sensor data mean in the context of local 

and regional air quality and consequently make behavioral decisions about outdoor 

activities. Statistical approaches were used to understand the relationship between short-term 

ozone and fine particulate matter measurements with longer term averages. The Sensor 

Scales and explanatory background materials are housed in the Air Sensor Toolbox on the 

EPA website [6] and have also been described elsewhere. To test the effectiveness of these 

messages and their visual presentation, EPA conducted focus groups in 2015 and 2017, 

before and after the deployment of the pilot respectively. Analysis of the outcomes of these 

focus groups is underway. After considering the input from the focus groups, EPA will refine 

the messages as appropriate and consider outreach to air quality sensor developers on these 

focus group findings. Additional work is also on-going to develop similar message schemes 

for selected HAPs.

In addition to the NAAQS, EPA’s Integrated Risk Information System (IRIS) provides 

inhalation reference concentration (RfC) values for HAPs and other key pollutants important 

to many EPA Programs with a focus on chronic exposure durations (from years to a 

lifetime). The Agency for Toxic Substances and Disease Registry (ATSDR), a federal public 

health agency of the U.S. Department of Health and Human Services, develops similar 

substance-specific minimal risk level (MRL) values for acute (1–14 days), intermediate (15–

364 days), and chronic (365 days and longer) exposure durations [7]. ATSDR’s work is 

focused on Superfund sites, but environmental health specialists apply the MRLs in a wide 

range of investigations. Many state agencies also develop inhalation health effect reference 

values in support of their programmatic needs. More generically, the term reference value is 

used in this text to include all of the various values referred to as standards, guideline values, 

toxicity values, health benchmarks, etc., and includes values developed for use in emergency 

response, occupational exposure monitoring, and those protective of the general public. 

Additional reports are available for a more complete comparison of the available systems of 

health effect reference values [3,8], and between values for specific pollutants [3,9–13].

2.1.2. Occupational Versus Environmental Exposures—One issue likely to be 

resolved on a case-by-case basis is the overlap between the environment and the workplace. 
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An employee may be exposed to a chemical in the workplace at a higher concentration than 

in an outdoor environment. In addition, because the worker is assumed to be fit and healthy 

and to have periods of recovery from exposure, the levels of concentration deemed tolerable 

are also higher. A citizen wearing a sensor outdoors, may well carry it into their workplace, 

and could then experience problems reconciling the levels of pollutants considered 

acceptable in these different milieus. For example, a sensor designed to help citizens avoid 

pollution from motor vehicles might measure carbon monoxide. EPA sets a primary NAAQS 

of 9 ppm averaged over an 8-h period and 35 ppm averaged over a 1-h period, not to be 

exceeded more than once per year. In the workplace, the situation is not quite as 

straightforward, but all the limit values which might be applied are higher than those under 

the NAAQS. The OSHA Permissible Exposure Limit is 50 ppm, while the National Institute 

for Occupational Safety and Health (NIOSH) Recommended Exposure Limit is 35 ppm, and 

the American Conference of Governmental Hygienists (ACGIH) Threshold Limit Value is 

25 ppm, all averaged over an 8-h period, as with the 9 ppm NAAQS standard. If the monitor 

alarm is set for the 8-h average NAAQS value, or possibly even at the one-hour average 

value, the alarm might easily be triggered in the workplace, which might be, for example, a 

bus garage or foundry. The ensuing discussion with the workplace safety manager or the 

employer regarding the acceptability of the exposure situation might be difficult for both 

parties in the absence of well-thought out responses. Nevertheless, in a holistic vision of the 

exposome, which should consider all exposures over all life-stages, it may not be appropriate 

to regard ambient, indoor and workplace exposures as somehow “different”, to be always 

measured and assessed separately [14], and so it is to be hoped that it will not be necessary 

to turn off ambient continuous air monitors “at the factory gates”.

2.1.3. Global/International Perspectives—Low cost air quality sensors are of interest 

worldwide. Multiple studies have distributed sensors in an effort to apply themto local 

environmental research [15–18]. One of themost notable efforts involving multiple countries 

and metropolitan areas was the Citi-Sense project [19,20]. This diverse research project 

involved technology developers, citizen scientists, academics, and professional research 

organizations using low cost sensor technologies with a purposeful intent [21,22]. The pan-

European initiative, EuNetAir, has goals of developing harmony in sensor selection and 

deployment strategies as well as coordinating sensor evaluation protocols to ensure the 

timely integration of air quality sensors into monitoring networks [23–25]. The Clean Air 

Asia consortium, a partnership of multiple Asian-based cities, sensor enthusiasts, academics, 

and air quality professionals are attempting to improve air quality and improve the overall 

living conditions in some of the most polluted cities in the world [26].

Even with the apparent world-wide enthusiastic use of low cost sensors to inform public 

awareness of environmental conditions, there is also a call to ensure the data being collected 

from these devices across the globe are accurate enough to be used in a purposeful manner 

[27]. This call for an adequate understanding of sensor performance is not only a reasonable 

approach but one that must be pursued with the same enthusiasm as those wishing to 

disseminate low cost sensors to a global population.

A multitude of pseudo air quality index messaging applications are available on the internet 

from sources around the world [28]. Some of these applications are using low cost sensors to 
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collect air quality data, potentially not accounting for the accuracy of the measurement or 

the environmental setting in which the measurements are taking place (e.g., indoor, outdoor, 

near source categories). Furthermore, use of subjective data messaging on health impacts of 

such sensor measurements without a scientific basis has the potential of confusing the 

public-at-large and their understanding of sound air quality awareness indices.

The World Health Organization (WHO) describes air pollution as a “major environmental 

risk to health”. The WHO Air Quality Guidelines (AQG) provide an assessment of air 

pollution health effects and recommend reference values for health-harmful pollution levels 

of ozone, PM10, PM2.5, SO2, and NO2 [29]. ATSDR has considered AQGs in the screening 

process of health evaluations for multiple site investigations in recent years [30–33]. The 

European Commission (EC) has developed air quality standards for the six US criteria 

pollutants, as well as benzene, polycyclic aromatic hydrocarbons (PAHs), and three metals: 

arsenic, cadmium, and nickel.

2.2. Communicating Across Audiences

Portable sensors present a great deal of promise for identifying personal exposure to 

toxicants present in the environment. However, communication between government or 

public health agencies, sensor manufacturers, researchers, employers and employees, and 

citizen scientists is particularly important given the varying degrees of accuracy across 

sensors, the complexities of environmental exposure, and the difficulties in interpreting 

potential health risk based on readings from a portable sensor. Thus, the subsections below 

summarize the various efforts that agencies represented on the ASHG membership have put 

toward communicating with these groups.

2.2.1. Citizen Scientists and Communities—Over the last decade, members of the 

public have become increasingly engaged in taking measurements of their environments and 

otherwise contributing to scientific research. Enabled by the rapid pace of growth of sensor 

technology, many citizen scientists collect data on air quality in their local environments, 

both individually and as a part of organized projects. The growth of these technologies and a 

surge in enthusiasm for these approaches has pushed the boundaries of traditional 

institution-driven research. Often called “citizen science”, these efforts are also referred to as 

civic or community science, community-based monitoring, crowdmapping, participatory 

science, open science, or crowdsourcing. In citizen science, the public participates 

voluntarily in the scientific process, addressing problems in ways that may include 

formulating research questions, conducting scientific experiments, collecting and analyzing 

data, interpreting results, making new discoveries, developing technologies and applications, 

and solving complex problems [34]. Of particular relevance to air quality research and air 

sensors, community science or community citizen science is “collaboratively led scientific 

investigation and exploration to address community-defined questions, allowing for 

engagement in the entirety of the scientific process. Unique in comparison to citizen science, 

community science may or may not include partnerships with professional scientists, 

emphasizes the community’s ownership of research and access to resulting data, and orients 

toward community goals and working together in scalable networks to encourage 

collaborative learning and civic engagement” [35].
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The growth of citizen science offers significant opportunities and challenges for federal 

agencies. Citizen science increases public understanding and community and civic 

engagement with science and environmental issues, especially locally. Citizen science can 

connect agencies to the public, provide opportunities for working together towards common 

goals, support innovation, and make science more accessible and available. It provides data 

that would otherwise be inaccessible, helps generate a more comprehensive understanding of 

variation over space and time, and can increase our understanding of social science and 

human behavior. At the same time, low cost sensor technologies and citizen science 

introduce challenges to federal agencies, such as communicating risk to project participants, 

increased public pressure for actions like regulations and enforcement, and communication 

of data quality. In December 2016, the National Advisory Council for Environmental Policy 

and Technology provided EPA with advice and recommendations for how to maximize the 

benefits of citizen science and respond to the corresponding challenges. Recommendations 

include building technical capacity, providing guidance and communicating data quality 

needs for different data uses, and integrating citizen science into the full range of EPA’s 

work [34].

EPA is collaborating with citizen scientists to share tools and technology, conduct air 

monitoring studies, and interpret sensor data. The Air Sensor Toolbox website [6] was 

created in 2014 to provide resources and tools to citizens interested in learning more about 

conducting successful air monitoring projects. Topics include how to use sensors, 

interpreting sensor data, information about EPA air monitoring projects, funding resources, 

and local air monitoring examples across the United States. The Air Sensor Guidebook [36] 

provides a comprehensive overview of air pollutants, sensors, study design, data collection, 

and data interpretation. Other resources include sensor evaluation reports highlighting 

performance of various sensors on the market, standard operating procedures for sensors, 

fact sheets, blogs, and training videos from the EPA-sponsored Community Air Monitoring 

Training in 2015.

Another way EPA engages communities is through collaborations. One such collaboration 

was conducted in the Ironbound community in Newark, New Jersey through a Regional 

Applied Research Effort (RARE) grant [37]. EPA scientists trained citizen scientists from 

the Ironbound Community Corporation (ICC) (The Ironbound section of Newark is a 

multicultural, multiracial mosaic whose population of 50,000 reflects the diversity and the 

challenges in urban America. ICC impacts the lives of nearly 1000 people daily and 

thousands annually. The majority of ICC’s 3000 annual clients are from very low to low 

income households with low literacy and English proficiency and multiple family stressors.) 

to operate sensor pods developed by the Office of Research and Development (ORD). The 

collaboration allowed for joint decisions regarding study design, sensor siting, and 

collection, validation and interpretation of sensor readings. Following the Ironbound project, 

a similar RARE grant collaborative project was performed in Ponce, Puerto Rico. EPA 

scientists used lessons learned from the first project to attempt to improve study design 

topics such as roles and responsibilities and data validation and interpretation. Tasks such as 

managing, validating, and interpreting large datasets can be an obstacle for community 

groups involved in air monitoring projects.
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ATSDR and NIOSH have partnered with University of Cincinnati, Georgia Tech, and 

University of Texas Arlington to pilot the use of real-time sensors as sentinels that trigger 

sample collection via more conventional devices. For example, a low-budget hydrogen 

sulfide detector can be programmed such that, once a certain threshold is exceeded, a VOC 

canister will be filled and then sent for laboratory analysis. ATSDR is developing these 

projects either to characterize peak exposures or as the first stage in assessing the need for a 

full-blown traditional air monitoring study.

Sensor collocation is an important step to perform before embarking on any monitoring 

project, regardless of who is conducting the monitoring. This process involves siting sensors 

in line with regulatory monitors (the gold standard) for a period of time in order to compare 

the two datasets and establish a regression equation to normalize sensor data and make it 

more accurate. EPA scientists recently created tools designed to assist citizens in this 

process, including an easy-to-use Excel™macro that allows one to compare two datasets, 

such as sensor and reference data, and with one click provides a regression equation, 

comparative data graphs, and descriptive statistics. A training document that explains 

collocation and why it is important, and how to perform a proper collocation, accompanies 

the macro. EPA is partnering with the Clean Air Carolina community group and the Eastern 

Band of Cherokee Indians to conduct their own collocation projects, pilot test these 

resources and provide input on how to improve them for use by the general public.

2.2.2. State, Local and Tribal Agencies—State, tribal and local health and regulatory 

agencies were identified as a primary target audience early in discussions within the ASHG. 

The more proximately located agencies and offices are more likely to be called by the public 

and press, and may be more resource-challenged to interpret data generated using sensors. 

The EPA Regional Offices were identified to be the most likely first contact point for EPA. 

Similarly, ATSDR has Regional Offices that are another resource for health agencies.

Health agencies at all levels of government are called upon by the public and press to 

interpret air monitoring data. City and county health departments, depending on their size 

and community needs, may have environmental health specialists on staff who are familiar 

with air monitoring methods. Frequently, local agencies will defer to their respective state 

health department, many of which have specialists that are supported by the ATSDR 

Cooperative Agreement Program. State or local agencies may in turn also contact ATSDR or 

its sister agency, the National Center for Environmental Health (NCEH), which is part of the 

Centers for Disease Control and Prevention (CDC). As noted earlier in Section 2.1.1, there 

are several reference value systems which have been applied in interpreting exposures to 

non-criteria air pollutants, including the RfC and MRL values. Health agencies also 

frequently make site-specific exposure dose calculations and may evaluate health risks for 

shorter averaging periods by adapting the dose-response information in toxicology studies 

on which the reference values are based.

In order to address these needs, EPA Regional Offices have initiated outreach to state, tribal, 

and local environmental agencies to facilitate information sharing amongst stakeholders and 

to develop an inventory of sensor-based community air quality investigations. EPA Regional 

Office staff have highlighted EPA’s Air Sensor Toolbox for Citizen Scientists [38] in this 
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outreach, facilitating exchanges on sensor operation and maintenance, funding opportunities, 

and tools for data interpretation. For example, the Minnesota Pollution Control Agency 

provided input to the EPA Regional Office in Chicago (Region 5) on its own experience 

managing an air sensor loan program, and shared documentation it had developed to inform 

community members about proper sensor operation.

Monitoring for the NAAQS pollutants is delegated to state agencies with oversight from 

EPA Regional Offices and EPA’s Office of Air Quality Planning and Standards (OAQPS); 

there is a structured regulatory program to determine compliance status with each NAAQS. 

Emissions of HAP are regulated at the source of the emissions, and monitoring is mostly 

initiated at the local level (i.e., state, tribal and local agencies), with federal guidance and 

some federal funding. There are very specific regulatory requirements in monitoring for the 

NAAQS pollutants but the States and Tribes have more leeway in monitoring for other 

purposes (e.g., for HAPs). EPA’s Superfund Program uses various technologies for 

emergency response, and new sensors may be useful to inform decisions in these scenarios. 

Federally recognized Tribes interface with EPA and ATSDR on a government-to-

government basis; many receive EPA grants or ATSDR technical assistance to do monitoring 

and other environmental health projects.

2.2.3. Sensor Manufacturers—Low cost air quality sensors have exploded onto the 

commercial market in the last decade. Development and manufacturing of these devices is 

not isolated to a single sector or industry. Some of the earliest developers were design teams 

associated with academic industrial/design arts programs, telecommunication research 

groups, and non-profit citizen scientists [39]. In particular, these developers took advantage 

of inexpensive sensor components and their individual areas of expertise to craft air quality 

sensors to meet a wide variety of needs [40]. More traditional instrumentation manufacturers 

have recently started to invest research capital into the low cost sensor area [41]. Their 

presence is the result of the growing citizen science movement and an obvious market niche.

The existence of a multitude of sensor manufacturers has resulted in both obvious benefits 

and deficits. On the plus side, there are numerous low cost sensors in a price range typically 

well under $1000 available for the interested user for both particle as well as gas phase 

pollutant monitoring. Many offer user friendly features such as immediate data visualization 

through smart phone applications with wireless data transmission. Some concerns associated 

with low cost sensor production is that often manufacturers may lack the technical know-

how or capabilities to adequately test or calibrate their devices prior to releasing them to the 

market [27]. Other concerns include reliability issues between replicate copies of the same 

sensors attributed to either a poor overall manufacturing process associated with the fully 

assembled sensor or issues with the individual components themselves [42,43].

Recent sensor evaluation efforts by recognized institutions, including the U.S. EPA and 

others [6,44] would appear to be having a positive impact upon sensor manufacturing. In 

particular, work conducted in 2012 resulted in some of the first reported performance tests of 

sensors from a wide variety of manufacturing sources [2]. The evaluations resulted in an 

almost immediate update of the technology by many of the manufacturers to overcome 

issues first revealed in the tests (e.g., battery failures, low detection sensitivities, poor 

Woodall et al. Page 10

Atmosphere (Basel). Author manuscript; available in PMC 2017 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



telecommunications protocols). Some of those early manufacturers would appear to have left 

the market while other new ones have joined. These observations suggest that it is likely that 

more mature instrument manufacturers will continue to invest in this area and capture more 

of the market share as start-up groups continue to develop unique devices to meet a 

particular niche.

2.3. Calibration and Validation

As mentioned previously, the calibration procedures conducted by most low-cost sensor 

manufacturers are often severely inadequate or non-existent and fail to establish the sensor’s 

performance characteristics, especially when used in the ambient environment. End users 

and research organizations have often taken the lead on establishing the performance of 

these emerging technologies and sharing their results. Noted groups establishing sensor 

performance include the European Union’s Joint Research Center [45], the U.S. EPA [46], 

and the South Coast Air Quality Management District’s AQ-SPEC laboratory [47]. Results 

show that while nephelometric (light scattering) devices might perform well in direct 

chamber-based evaluations, they often reveal significant departures from a true reference 

grade instrument response under real-world (ambient) conditions [1]. In like manner, while 

excellent chamber-based response relationships have been observed for select gas phase 

pollutants [2], ambient test results have been less promising or inconsistent [42]. There are 

of course, exceptions to these observations and certain devices and sensors appear to show 

more promise relative to their performance features [48].

Gas detection in the workplace has a long history of being driven by flammability concerns, 

beginning with the miners’ safety lamp, but direct-reading real-time instruments have also 

been used to determine toxic gases for almost 100 years; colorimetric detector tubes 

patented for detecting carbon monoxide in the 1930’s are examples. More recent 

developments of infra-red analyzers and gas chromatography detectors (with or without an 

associated gas chromatograph) have been portable, but not personal, although current 

research into miniaturization may alter that situation. Electrochemical cells have been 

developed for specific acute hazards, such as carbon monoxide, hydrogen sulfide and 

chlorine. These are used in process safety applications, but have also been adapted for use in 

personal dosimeters. The quality of data used for safety monitoring and personal exposure 

assessment in the workplace is of paramount importance, particularly in relation to acutely 

hazardous substances. The European Union countries have developed guidance for the 

performance, testing, selection, installation, use and maintenance of electrical apparatus 

used for the direct detection and direct concentration of toxic gases and vapors. Other 

Standards-setting organizations have published similar products, and a joint Working group 

of the International Organization for Standardization (ISO) and the International 

Electrotechnical Commission (IEC) are working on umbrella standards to replace these 

(these Standards are detailed in Appendix A). In the USA, NIOSH has developed guidance 

for ensuring data quality for gas and vapor detection, including during emergency response 

[49,50]. The American Industrial Hygiene Association, through their Gas and Vapor 

Detection Systems Committee (now Real-Time Detection Systems Committee) has 

developed guidance for manufactures to report specifications for electronic real-time gas and 

vapor detection equipment [51].
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Recognizing the need to calibrate instrument response under real-world conditions, variable 

performance based on changing conditions (e.g., aerosol size-distribution), and deteriorating 

sensor response as due to age, new research efforts have been focused on the idea of auto-

calibration methods [52]. Such methods may be able to maintain the accuracy of a node-

based distributed sensor system for longer term measurements.

Extending beyond the need for validation in controlled laboratory settings to “real world” 

conditions and environmental epidemiological and citizen science applications, the National 

Institute for Environmental Health Sciences (NIEHS) released a phased field validation 

program in 2013 [53]. Through this effort, teams of engineers, exposure scientists and 

environmental epidemiologists are working together to test sensor performance at the pilot 

scale, including iterative improvements in sensor system design and performance and then 

scaling up the application to a full-sized epidemiological study to demonstrate the added 

value of temporally and spatially resolved air pollution exposure assessment relative to 

existing ‘citizen’ measures.

3. Related Projects and Programs

Although the ASHG has not been a prime mover in development of key products or 

programs, it has served as an advisory group and has contributed to a number of projects and 

programs, as noted in the sections below.

3.1. Village Green

The U.S. EPA’s Village Green project has provided a test-bed for long-term evaluation and 

application of emerging air quality sensors in a variety of community settings [54]. While 

the sensor technologies for particulate matter and ozone are not considered truly low cost (~

$6000/each), they do represent mid-tier technologies [55] which are showing good to 

excellent capabilities for certain attributes. In particular, they are capable of providing 

extended periods (months) of ambient air quality monitoring using sustainable energy (solar 

power) with little or no technical support and often with a high degree of agreement with 

local reference monitoring [56]. Another unique feature of the Village Green is that it was 

designed to stream data continuously to the public via its web-based data portal. It was in 

fact, the first real-time public reporting of air quality data for environmental awareness 

purposes provided to the general public by the US EPA. Since its conception in 2014, 

Village Green stations have now been deployed in a total of eight (8) U.S. metropolitan areas 

and involve a variety of air quality sensor and emerging technologies (variable sustainable 

power supplies, data microprocessing features, etc.).

At the time of its development as a technology test bed and community air quality awareness 

tool, its capabilities to meet purposeful air quality data analyses were not established. EPA’s 

investigations into short time interval sensor data messaging provided an opportunity to use 

the Village Green for such an analysis due to its extensive database containing 1-min 

measurements of both ozone and fine particulate matter. Analysis of that database resulted in 

a pilot Sensor Scale associated with potential short time interval air quality measurements 

[5]. EPA is launching a pilot project to test a new tool for making instantaneous outdoor air 

quality data useful for the public. The new “Sensor Scale” is designed to be used with air 
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quality sensors that provide data in short time increments–often as little as one minute [5]. 

EPA developed the scale to help people understand the 1-min data the stations provide and 

how to use those data as an additional tool for planning outdoor activities.

3.2. The E-Enterprise Advanced Monitoring Team (EEAMT)

Under the direction of the E-Enterprise Leadership Council, a joint EPA/State Advanced 

Monitoring team was formed in April 2015 to address the challenges and opportunities 

presented by rapidly changing air and water technologies. Data interpretation is one of five 

priority projects identified in the path forward for EPA, States, and Tribes [57]. In order to 

provide context and interpretation of advanced monitoring data in formats relevant and 

understandable to users, the team was charged with advancing (1) statistical analyses to 

understand the relationship between continuous data and data collected over longer-term 

averaging times or via discrete (e.g., bi-weekly) sampling; (2) development of visualization 

tools (e.g., interactive maps) and websites with appropriate messaging; and (3) development 

of outreach and communication materials.

Conducting statistical analyses to understand the relationship between short term 

measurements and longer term standards or discrete measurements is a blanket need across 

media and pollutants. While messaging already exists to alert the public about air or water 

quality conditions experienced over specific time periods (e.g., 1-h, 8-h, or 24-h), the same 

messaging should not be used to translate short term (e.g., 1-min) measurements. Two 

articles discussing an approach to relate short term ozone and particulate matter (PM2.5) 

measurements with longer term averages have been published [58,59]. Other needs 

identified by the team include data analysis and messaging for SO2, NO2, CO, PM10, 

benzene, total volatile organic compounds (VOCs), and other specific VOC compounds.

In order to create visualization tools that make continuous and discrete state/federal data 

more accessible and understandable, EPA and States have determined it is important to 

present real-time (e.g., hourly concentration values) along with appropriate caveats. 

Examples of caveats include marking data as “raw”, “provisional”, or “final” and 

distinguishing between different forms of data (e.g., regulatory vs. peer reviewed). A need 

exists to display continuous data along with discrete measurements while giving the data 

context including geographical and meteorological information. Mockups were drafted as 

part of a thought process to address these issues and allow for EPA and States to provide 

guidance or expertise to big data developers desiring to stream, collect, or use regulatory and 

sensor data. Once short term messaging has been developed, it is important to develop 

appropriate outreach and communication materials that EPA and States can use for 

consistent messaging including frequently asked questions (FAQs) and a standardized, 

centralized repository of metrics that break down toxicity/health information by pollutant for 

both short term and long term effects (e.g., gaseous, metals, PM, pH, toxins, dissolved 

oxygen, etc.). Outreach material should describe the limitations of sensors and sensor 

networks including information on what we do not know and cannot measure with 

confidence.
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3.3. Homeland Security Applications

Air sensors have many important applications relating to homeland security, but two roles 

are especially important: (1) serving as sentinels to detect the release of dangerous 

substances into the air, and (2) providing measurements of the amount of dangerous 

substances present in the air so that health risks can then be assessed and appropriate 

decisions made to protect public health.

Serving as sentinels to provide early warning of the release of dangerous substances is a 

very critical function for real-time air sensors. In this capacity, air sensors are designed to 

monitor background levels of various substances (dangerous chemicals or/or their 

indicators) and detect any significant increases in their presence. Air sensor networks have 

already been deployed extensively as sentinels in several major cities, chemical plants, 

military installations, and during major public events. These networks have been deployed 

on roof tops, in underground transportation systems, and in various types of mobile ground 

vehicles and aircraft.

In addition to their role as sentinels to detect the release of dangerous chemicals, air sensors 

may be used to measure concentrations of harmful chemicals which can potentially provide 

an estimate of health risks to persons breathing the air. Estimating health risks from acute or 

short-term exposure durations is a challenging task, as has already been noted in this paper. 

Most of the tools used to assess health risks are more centered on long-term, chronic, or 

lifetime exposure to chemicals. For example, as EPA’s premier program for assessing health 

risks from chemicals, the Integrated Risk Information System (IRIS) has focused on dose-

response data for chronic exposures. Health effect reference values derived to assess long-

term health risks have very little, if any, value for assessing health risks from acute, short-

term, or intermittent exposure scenarios, and few have been developed to assess those health 

risks to the general public.

A number of chemical release accidents, including the December 1984 accidental release of 

methyl isocyanate from a Union Carbide chemical plant in Bhopal, India, led to the 

formation of the Acute Exposure Guideline Level (AEGL) program in 1995 [60]. Standing 

Operating Procedures for deriving AEGL values were developed by the National Research 

Council (NRC) [61] for use in both planning for and during a catastrophic chemical release 

event, using values covering inhalation exposures from 10-min to 8-h.

Shortly after the events of 11 September 2001, the need for additional sets of values for use 

for remediation in the aftermath of such events led to the development of another set of 

health metrics, called Provisional Advisory Levels (PALs). PALs were derived by building 

upon the AEGL methodology developed by the NRC [61], to create values for use at 1-day, 

30-days, 90-days, and 2-years durations [62]. Under the PALs program, EPA has drafted 

over 3000 numeric values for over one hundred priority chemical agents, two routes of 

exposure (ingestion and inhalation), three levels of harmful effects, and four relatively short 

exposure durations. These values, in addition to those already published by many other 

organizations [3], can provide a context on which to compare sensor-derived exposure 

levels.
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3.4. Indoor Air–Non-Industrial

Indoor air quality (IAQ), which is the air quality within buildings (i.e., homes, schools, 

offices and other non-industrial buildings) and other enclosed spaces, can affect the health, 

comfort and ability to perform for occupants, from infants to senior citizens. IAQ involves 

many factors including: outdoor air contributions; chemical, micro-biological, and 

particulate contaminants; and, characteristics of the indoor climate such as temperature, 

humidity and airflow. Americans spend about 90 percent of their time indoors [63–66], 

where pollutant levels, like some VOCs, may be two to five times higher—and occasionally 

100 times higher than outdoors [67–69]. EPA traditionally has focused its IAQ efforts to 

identify sources and developing guidance to reduce human exposure to unhealthy indoor air 

and to provide low-cost mitigation strategies consistent with public health practices. In 

addition, many international professional, trade, and standards organizations have dedicated 

committees addressing a broad range of indoor air quality issues. With the increased 

availability of low-cost sensor technology, however, the resources we use to assess indoor air 

have been expanding.

One challenge for sensor work within indoor environments is the fact that the several 

pollutants important in the indoor environment cannot be detected accurately by current low-

cost sensor technology. Indoor air sensors have the same challenges that ambient air sensors 

encounter when attempting to evaluate short-term sensor readings. Most of the indoor air 

pollutants also share the challenge associated with HAPs, the lack of enforceable or agreed 

upon health based standards to with which to compare sensor readings. As with HAPs, the 

available health effect reference values may be inappropriate for direct use with indoor air 

sensor readings. There are several other challenges unique to using sensors indoors—for 

example, unlike the ability of ambient air sensors to be collocated with regulatory monitors 

to help assess accuracy, there is no similar availability for indoor air.

While guidance development around IAQ best practices will continue within EPA, the 

potential for increased use of sensor technology for indoor air quality continues to evolve. 

Sensors that work with occupants’ health-assessment technologies and those that can actuate 

building systems or individual appliances automatically may help enhance IAQ efforts in the 

built environment. There is a great potential that, as low-cost sensor technology improves, it 

may be a viable complement to comprehensive building system approaches currently used 

by the IAQ community and would help inform and improve IAQ stakeholders’ ability (both 

professional and consumer level) to use IAQ management tools, interpret air quality data for 

their space, and assess the benefits of IAQ-related actions.

It is important that we not only continue the engineering “fixes” that are constantly 

improving source control, as well as ventilation and filtration/air cleaning systems, but also 

work to improve sensor technology as a tool to help optimize building performance and 

increase the accessibility of these tools as a complement to integrated strategies for 

improving IAQ for all parts of society. Within the context of IAQ, this may involve creating 

future systems that can be automated, improving the integration of these low-cost tools with 

building and health-assessment systems, establishing guidance that creates IAQ best 

practices that integrates these tools into existing public health practices and provides 

Woodall et al. Page 15

Atmosphere (Basel). Author manuscript; available in PMC 2017 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



appropriate messaging for the public to better understand their health in their indoor 

environments.

4. Maximizing the Usefulness of Sensor Readings

As discussions within the ASHG have progressed over the years, approaches have been 

considered on how sensors may improve our understanding of real-world dosimetry, and 

how we might better organize the process of developing and using sensors through life-cycle 

analysis. Both of these approaches are more immediately relevant to research-grade sensor 

technologies; however, as more improvements in sensitivity and specificity are made to the 

low-cost sensors available to citizen scientists, these approaches will apply to a more 

universal set of sensor users.

4.1. Transitioning Sensors into Dosimeters and Future of Exposure Science

Radiation biology provides a paradigm for transitioning sensor-derived data into estimates of 

internal dose. Biological effect data from early animal studies modeled radiation exposures 

to define internal dose and algorithms were developed so that the readout from portable 

detector could be translated into the dose delivered to internal target organs.

It is the internal dose (the concentration of the agent at the cell/organ/tissue being affected) 

and not the environmental exposure level that is more closely related to toxicological effects. 

Health-based standard setting and development of health effect reference values are moving 

to apply emerging advances in exposure and toxicological sciences aimed at a more 

seamless integration of exposure and internal dose metrics, together with the incorporation, 

coherent alignment, and coordination of novel data streams [70–72]. Elucidation of the 

linkages between exposures and adverse effects in humans and the ecosystem will result in a 

better understanding on which to develop effective management strategies.

Constructing a robust context for this integration calls for coordinated research with human-

health and ecologic-health scientists to identify, collect, and evaluate data that capture 

internal and external markers of exposure in a format that improves the analysis and 

modeling of exposure–response relationships and links to emerging methods for hazard 

identification such as high-throughput test systems (HTS). Figure 1 depicts selected 

scientific and technologic advances for measuring and monitoring considered in relation to a 

conceptual integration of exposure and dose as espoused by the National Research Council 

[71].

Mattingly et al. [73] developed an exposure ontology (ExO) designed to address the lack of 

exposure information required to elucidate environmental contributions to diseases, translate 

molecular insights from new technologies such as HTS, and aid assessment of human and 

ecological risks. The ExO formalized definition such as “exposure receptor” and centralized 

the role of exposure science with the intent to extend its ability to integrate and analyze 

exposure information within the broader context of environmental health. The exposure 

receptor can be an organ, tissue or cell, and the exposure stressor can be a biological, 

physical, or psychosocial agent, so that exposure assessment may include estimating the 

magnitude, frequency, and duration of an exposure, along with characteristics of the specific 
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receptor. This concept of the exposome is consistent with the life-cycle approach articulated 

above regarding sensors. Such integration will expand the impact of exposure data and 

inform existing environmental health data by providing associated real-world exposure 

context.

On the response side of the exposure-dose-response linkage, adverse outcome pathways 

(AOP) are emerging as an important construct for the integration of toxicological effects 

across various levels of biological organization (e.g., genomic, cellular, target tissue, 

individual, population) based on HTS and identification of molecular initiating events 

[74,75]. This construct is also completely consistent with the ExO, and more recently 

Teeguarden et al. [76] have proposed formal linkage of exposure science with the AOP by 

means of the aggregate exposure pathway (AEP).

Therefore, emerging technologies now provide a method whereby measures of 

environmental exposure can be translated to an internal dose which can then be used in 

applications such as biomonitoring of populations or in cell systems. These approaches 

essentially provide a scalable platform with which to depict both exposure and internal dose. 

Alignment of exposures across experimental toxicity-testing systems can be achieved by 

understanding, measuring, and applying this information on the processes that control the 

time course of concentrations and delivery of chemicals and particles to target cells in 

various test systems at different scales (e.g., scale of ecological epidemiological studies, 

target tissue dose for in vivo animal studies, delivered concentration in HTS) that may be 

used as the basis for developing health-based values to which sensor data may be compared. 

Such exposure and internal dosimetry considerations can provide a context for the 

interpretation of emerging sensor data and may also inform future considerations of the form 

of various health-based reference values.

4.1.1. Dosimeters in the Workplace—The Army projects aimed at developing a 

naphthalene dosimeter are an example of how biomarkers of exposure are being integrated 

with chemical sensor-derived data [77]. The first in the series of naphthalene dosimeter 

projects was funded through the Army’s SBIR program. It developed an instrument capable 

of measuring naphthalene from air every three minutes [78]. A second project, underway at 

NIOSH, is an independent evaluation of the performance of the instrument. A third project 

lead by the U.S. Army Research Institute of Environmental Medicine is deploying the 

prototype instrument on military fuel-handlers to measure the concentration of naphthalene 

in their breathing zone. Concurrent to collecting the personal real-time exposure data, 

biomarkers of naphthalene exposure are being collected from the exhaled breath, urine and 

skin of the individual wearing the air sensor. Following the radiation dosimetry paradigm, 

the concurrently collected exposure and biomarker data will be used in a fourth project that 

will inform development of a model to estimate internal dose [79].

4.1.2. Dosimetry for NAAQS Air Pollutants—Portable sensors available for some 

NAAQS pollutants (namely, PM, O3, and NO2) have been evaluated by EPA. There are not 

specific metabolites that can be used to quantify the general relationship between exposure 

and dose. However, unlike naphthalene which enters the body by both dermal absorption and 

inhalation, at least these three NAAQS pollutants enter the body predominately by 
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inhalation. In general, greater than 80% of inhaled ozone is absorbed in the respiratory tract 

(see Table 5-1 of U.S. EPA, 2013 [80]). Thus, dose can be approximated as the product of 

O3 concentration, minute ventilation, and duration of exposure. Conceivably, an estimate of 

minute ventilation could be derived using an accelerometer in combination with data on the 

mass and gender of an individual. A more exact linkage to predicted decrements in lung 

function due to O3 exposure, at least in healthy individuals, could be calculated by linking 

dosimeter data with an existing model [81]. This type of approach could be applied to both 

occupational and ambient ozone exposures or adapted for other compounds where health 

endpoints are closely related to inhaled dose.

Development of a dosimeter for PM is complicated due to the dependence of particle 

deposition on inhaled particle size, route of breathing, tidal volume, breathing rate, and lung 

size [82]. A couple of PM samplers that mimic the deposition in adults during nasal 

breathing and light exercise based on the International Commission on Radiological 

Protection (ICRP) model [83] have been developed. First, Koehler et al. [84] employed the 

use of a foam plug in which particle deposition efficiencies are similar to the ICRP [83] 

predicted total respiratory tract deposition (average of adult males and females) for particles 

between 0.05 and 2 µm. Total deposited dose in the respiratory tract can be determined 

either gravimetrically or by digesting the foam and extracting metals or organs for 

quantification by other means. Second, TSI has developed a Nanoparticle Surface Area 

Monitor (Model 3550) which can be used to determine particle surface area depositing in the 

tracheobronchial and alveolar regions of the lung for particles between 0.01 and 1 µm. The 

Model 3550 is designed to match predicted deposition in an adult male. Its operation is 

based on the diffusion charging of particles followed by detection of the aerosol using an 

electrometer. Particle doses can be assessed by the second, computed as a time-weighted 

average, or cumulative total deposed particle surface area. Available portable PM sensors 

typically use light scattering to estimate PM mass or number concentration in air for micron-

sized or larger particle fractions such as PM2.5. Unless an underlying PM size distribution is 

known or assumed, estimates of dose cannot be derived based on data from these portable 

PM sensors.

The utility of a dosimeter for ambient NO2 is questionable. For NO2, one of the critical 

endpoints is asthma exacerbation via an increase in airways responsiveness, as discussed in 

Section 5.2.2 of the Integrated Science Assessment (ISA) for NO2 [85]. Since the increase in 

airway responsiveness does not appear to be associated with NO2 dose for NO2 

concentrations between 100 and 600 ppb [86], it may be sufficient to monitor NO2 

concentration. Additionally, ambient NO2 concentrations are generally only elevated near 

roadways, as discussed in Section 2.5.3 of the 2016 ISA [85]. An elevated NO2 sensor 

reading could serve as a warning for a person with asthma to take actions to reduce 

exposure, e.g., by using recirculation of air in an automobile or avoiding outdoor activities in 

close proximity to major roadways or during periods of increased traffic.

4.1.3. Dosimeters for Hazardous Air Pollutants (HAPs)—There are 187 air 

pollutants designated as HAPs, including several VOC, that are emitted by point sources and 

under the purview of Section 112 of the Clean Air Act [87]. These pollutants are known or 

suspected to cause cancer or other serious health effects, such as reproductive effects or birth 
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defects, or adverse environmental effects and are often also encountered in the workplace. 

As sensor technologies emerge to address these pollutants, our recommendations for life-

cycle characterization and dosimetry as discussed above will be essential to create proper 

context for interpretation of sample measurements with comparisons to appropriate health 

effect reference values, when such values are available [3].

4.2. Adopting a Life-Cycle Approach

An overarching life-cycle framework and decision-making process that the ASHG has 

encouraged as an ideal for air quality sensor applications is illustrated in Figure 2. The life-

cycle concept was originally developed for use in emergency response situations [88], 

adapted and applied for radioactive air sampling and instrumentation [89], adopted as a 

systematic way to organize the framework of the White House’s signature initiative on 

Nanotechnology for Sensors and Sensors for Nanotechnology [90], and most recently 

expanded to meet all manner of the emerging sensor needs for safety, health, well-being and 

productivity [91]. The lifecycle begins with a clear and complete identification of the 

purpose of the measurement, including what needs to be measured, under which conditions 

it needs to be measured, and how well it needs to be measured. The lifecycle guides the 

research and development, prototype testing, qualification type testing, production control 

testing, and training needs for the sensor system. The lifecycle further defines procedures for 

acceptance testing, initial calibration, functional checks, conduct and evaluation of 

operational experience, maintenance and recalibration, and periodic performance testing to 

confirm continued successful use of the sensor system. Effective following of the life-cycle 

process ensures that the sensor methods and instrumentation will work as intended under 

realistic conditions. Documentation and continuous improvement are essential at each step.

Use of the lifecycle supports an approach to sensor methods and instrumentation that is 

consistent with the roles served by resources such as My Air, My Health: An HHS/EPA 
Challenge [92] to develop and validate new methods, and the online AirNow [93] maps and 

forecast data that are collected and shared using federal reference or equivalent monitoring 

techniques or techniques approved by the state, local or tribal monitoring agencies.

4.2.1. A Working Definition of Air Quality Sensors and Health Informatics—A 

proposed working definition of Air Quality Sensors and Health Informatics might be “the 

science and practice of determining which information is relevant to meeting air sensor and 

health objectives; developing and implementing effective mechanisms for collecting, 

validating, storing, sharing, analyzing, modeling, and applying the information; and then 

confirming that appropriate decisions were made and that desired mission outcomes were 

achieved” [94]. The additional steps in the informatics lifecycle include “conveying 

experience to the broader community, contributing to generalized knowledge, and updating 

standards and training” [95]. Successful informatics endeavors will apply all of the steps in 

the process. ASHG members have also assisted with the development of an attempt to define 

“data readiness levels”, which could help with relevance and reliability issues for the 

collection, sharing, and application of air sensor data [96].
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4.2.2. Roles and Responsibilities of Sensor and Data Customers, Creators, 
Curators, and Analysts—In the context of our working definition of informatics for air 

sensors and health, the roles and responsibilities of the myriad individuals who are engaged 

in the development and application of air quality sensors can be viewed as fitting into four 

categories: sensor and data customers (who specify the sensors and data needs for their 

intended purposes), sensor and data creators (who will develop relevant and reliable sensors 

and data to meet the customer needs), sensor and data curators (who will maintain and 

ensure the quality of the sensors and sensor data), and sensor data analysts (who will 

develop and apply models for data analysis and interpretation that are consistent with the 

quality and quantity of the data and that those data meet the customers’ needs). In some 

instances, the same individuals may perform all roles, and in the larger global reality the 

individuals and their roles may extend over significant distances, organizations, and time 

periods. As shown in Figure 3, effective communication across the many customer, creator, 

curator, and analyst interfaces is essential, and that communication across each of the six 

interfaces must work effectively in both directions [95]. This vision follows the views of 

Hendren et al. [97] on a collaborative approach to assessing, evaluating, and advancing the 

state of the field for data curation in the emerging field of nanomaterials and 

nanotechnology.

5. Forecast of Advancing Technologies

Major areas of opportunity to advance the state of the art and application of sensor 

technologies include: strengthening and sustaining infrastructures for investments and 

collaborations, improving the sharing of information, integrating data and a coherent 

interpretation across various venues to construct a cumulative accounting of exposures, and 

advancing breakthroughs in miniaturization of sensor systems. At this writing, there are 

efforts across multiple organizations (public and private; large and small; formal and 

informal) with additional involvement by independent inventors. Entrepreneurial 

organizations such as Aclima have become involved in collecting data from mobile sensors 

attached to Google street-view cars [98] and are leading the way to making those data 

accessible.

Equally important are opportunities to increase the linkage of measurements of exposure via 

sensor readings to additional parameters useful to estimate dosimetry: biometric data (e.g., 

pulse rate, breath rate, and the like, which are now available from devices such as FitBit); 

geospatial measurements of location and daily movement patterns; and of the physical 

environment (temperature, humidity, etc.). These capabilities are most actively being 

developed within the occupational exposure arena but migration of these technologies to the 

low-cost sensor market is anticipated as value-added features. Properly informing and 

providing useful guidance to ensure these technologies are appropriately engaged will be 

another challenge for groups like the ASHG.

5.1. Infrastructure Needs

5.1.1. Forecast and Statement of Needed Investment—When real-time sensing is 

combined with concurrent GPS coordinates, the derived data are multidimensional. Today, 
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sensor-derived data include streaming of latitude, longitude, altitude in addition to the 

chemical data. However, the hardware and software to fully capture the potential usefulness 

is lacking. For example, visualization of multidimensional data might be imaged as a video 

of a multi-colored topographical map that flexes as an individual moves through different 

levels of the positional and chemical data. Depth of color might represent various 

concentrations of chemicals detected by the sensors. If the full potential is to be captured, 

investment is essential. Infrastructure is needed to not only capture multidimensional data 

streams but also analyze it as it is being produced. This is especially relevant to homeland 

security and for rapid response following a catastrophic event. The application of sensor 

technology to the field of epidemiology can also be cited as an investment opportunity. New 

evidence of cause-and-effect will become evident by developing the ability to retrieve 

archived multidimensional sensor-derived data and overlaying it with geographical disease 

prevalence information. Challenges of scalability across dimensions of time and geography 

must be addressed to properly interface with available health-based standards and reference 

values.

As described in Section 3.1, there is great interest, and investment, in transforming toxicity 

testing with the application of high throughput analyses using cell cultures [70]. Generating 

evidence to demonstrate the validity of these testing methods is an ongoing challenge. In this 

context, we have an opportunity to transform systematic hazard identification and risk 

assessment processes by combining real-time exposure monitoring with real-time image 

analysis. Again, investment in the data capture, analytics and archiving capabilities is 

essential if this opportunity is to be realized.

5.1.2. Scientific Literature Collection and Coordination—Another essential 

investment is needed to network the fields of Health Science, Electrical Engineering and 

Computer Science. A first step might be to encourage sensor-related journals to petition the 

National Library of Medicine for incorporation into the database. The National Library of 

Medicine’s PubMed database [99] provides the ability to search for peer-reviewed 

publications. This includes research about the use of sensors to assess indoor and outdoor 

air. As an example, PubMed includes air sensor-related publications from a journal called 

“Environmental Monitoring and Assessment” such as this 2017 one about “Public 

engagement on urban air pollution: an exploratory study of two interventions” [100]. 

However, not all scientific journals are indexed in PubMed and this is especially true for 

journals specializing in emerging areas and technologies Editors and publishers can submit 

their journals for inclusion in PubMed; however, not all journals will be accepted based on 

NLM’s selection criteria [101]. The relatively new PubMed Commons allows for the sharing 

of opinions and information about PubMed citations [102]. This could include comments 

about the techniques used in a publication or alerting readers to consider looking at 

publications with more current approaches and findings.

5.2. Miniaturization

Miniaturization has been essential to recent successes in moving laboratory-scale 

technologies to the field. For example, to meet the demands for personal exposure 

monitoring of the size characteristics and spatial distribution of ultrafine particles, Fierz et 
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al. [103] have developed a compact, real-time instrument called the diffusion size classifier 

(DiSC) which provides particle size information that is in good agreement with the much 

larger and more expensive laboratory-based aerosol spectrometers. Another personal 

monitoring device recently released into the market is the portable aerosol mobility 

spectrometer (PAMS) which simultaneously measures the number-weighted size distribution 

of submicrometer aerosol, including the nanoparticle fraction [104]. In developing the 

PAMS, NIOSH investigators used miniaturization to overcome the prohibitive size, weight, 

and cost limitations of the previous technology, and they also eliminated burdensome 

regulatory and administrative limitations for record-keeping and transportation of the 

instrument by replacing the traditionally used radioactive source for particle charge 

conditioning with a nonradioactive bipolar diffusion charger. Compared to traditionally used 

instruments, these innovations provided reductions in size (by a factor of 20), weight (by a 

factor of 10–15), and cost (by a factor of 4), along with improvements in analytical 

performance. However, further improvements in instrument size, weight, cost, and 

performance are still needed to make these technologies more widely affordable, deployable, 

and able to operate in the wide range of particle number concentrations that can be 

encountered in both workplaces and ambient environments. Needed improvements include 

smaller, more reliable power sources, including the possibility of body-heat or motion-driven 

power sources, and more compact data collection, processing, and memory capabilities. As 

described in the perspective article by Fadel et al. [105], advances in nanotechnologies could 

enable and accelerate the development of inexpensive, portable devices for the broad 

detection, identification, and quantification of biological and chemical substances, including 

sensors for air quality and health applications.

6. Summary and Conclusions

The goals of the ASHG are to provide an open dialogue from the multiple disciplines and 

agencies represented on a number of related issues: (1) improving the understanding of what 

sensor technologies may be able to deliver for these agencies to meet their missions; (2) 

communication of what small-scale sensor readings can provide to a number of audiences; 

and most centrally, (3) best practices in communicating health-related messages to numerous 

audiences.

In this paper, we have attempted to cross-reference other related projects and provide 

additional resources to an interested reader to pursue additional information from credible 

sources. Additional aims were to provide an update on the advances made to date under the 

auspices of these various programs, to forecast potential applications of rapidly emerging 

sensor technologies and to foster a collaborative response to challenges involved in their 

application to research and support of decisions related to air quality management.
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Appendix A

Standards for equipment used to detect and determine toxic gases and vapors in a workplace 

or similar situation.

A.1. Published

Europe:

1. EN 45544:2000 Workplace atmospheres. Electrical apparatus used for the direct 

detection and direct concentration measurement of toxic gases and vapours. Part 

1: General requirements and test methods; Part 2: Performance requirements for 

apparatus used for measuring concentrations in the region of limit values; Part 3: 

Performance requirements for apparatus used for measuring concentrations well 

above limit values; Part 4: Guide for selection, installation, use and maintenance.

USA

1. Underwriters Laboratory: UL 2075 Gas and Vapor Detectors and Sensors

2. American National Standards Institute/International Safety Association: ANSI/

ISA-92.00.01-2010 Performance Requirements for Toxic Gas Detectors; 

ANSI/ISA 92.00.02-2013 Installation, Operation, and Maintenance of Toxic 

Gas-Detection Instruments

3. American Society for Testing and Materials: ASTM E2885-13 Standard 

Specification for Handheld Point Chemical Vapor Detectors (HPCVD) for 

Homeland Security Application

International Electrotechnical Commission:

1. IEC 60079-29-1:2007 Explosive atmospheres—Part 29-1: Gas detectors—

Performance requirements of detectors for flammable gases

2. IEC 60079-29-2:2007 Explosive atmospheres—Part 29-2: Gas detectors—

Selection, installation, use and maintenance of detectors for flammable gases and 

oxygen

Other:

1. Australian/New Zealand Standard: AS/NZS 4641:2007 Electrical apparatus for 

the detection of oxygen and other gases and vapours at toxic levels—General 

requirements and test methods.

2. ISO database: https://www.iso.org/committee/52702/x/catalogue/p/0/u/1/w/0/d/0

3. CEN Database: https://standards.cen.eu/dyn/www/f?p=204:7:0::::FSP_ORG_ID:

6245&cs=178094E67E1897102F190938A48C7A285

A.2. Standards Proceeding through Process

ISO/IEC (IEC 62990-1) Workplace Atmospheres—Part 1: Gas detectors—Performance 

requirements of detectors for toxic gases
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ISO/IEC (IEC 62990-2) Work-place Atmospheres—Part 2: Gas detectors—Selection, 

installation, use and maintenance of detectors for toxic gases and vapours and oxygen 

sensors.
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Figure 1. 
Conceptual integration of exposure and dose (from National Research Council).
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Figure 2. 
The life-cycle approach for sensor methods and instrumentation [88–91].
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Figure 3. 
Communication interfaces, roles, and responsibilities for air quality sensor and health data 

customers, creators, curators, and analysts [95].
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